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ABSTRACT 

Bioassessment programs within California, in other states, and among federal 

agencies have used different methods to collect and analyze stream invertebrate samples.  

While this has created concern and confusion over the comparability of these many 

disparate sources of data, few studies have attempted to evaluate differences in 

performance of these methods and reconcile the results produced from varied approaches.  

To obtain directly comparable data sets we conducted concurrent sampling at 40 sites 

using three bioassessment methodologies that differed at each stage, from field sample 

collection to laboratory processing and data analysis (California Stream Bioassessment 

Protocol, Region 5 US Forest Service, and UC-SNARL methods).  We used a 

performance-based methods system to compare precision, bias, discrimination, accuracy, 

and correlations among multimetric and predictive model output assessment scores.  

Reference and test sites were first identified using local and upstream watershed 

disturbance criteria, and invertebrate community measures and models then developed to 

discriminate between these site classes.  Differences in performance between methods 

were small, and the assessment scores were highly correlated and accurately 

distinguished test and reference sites.  An examination of the association of impaired 

biological integrity with environmental stress gradients showed that the method using 

most replication and sample counts provided the clearest resolution of stressor effect 

thresholds and intermediate levels of impairment.  Despite slight differences in 

performance and stress detection, these results demonstrate that even substantially 

different methods of bioassessment yield very similar, effective discrimination of 

impaired biological condition.  This conclusion did not depend either on the data analysis 

approach used since both multimetric IBIs and multivariate RIVPACS predictive models 

were in close agreement.  Furthermore, simple data conversion procedures can be used to 

calibrate the data from more intensive sampling protocols to a common 500 fixed-count 

that provides a uniform and consistent data form for analysis and biocriteria 

development.  Existing data may thereby be integrated with future data collected using a 

unified standard approach. 
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INTRODUCTION 

 Surveys of the different protocols employed among federal, state and local 

programs for stream bioassessment have revealed considerable variation in the 

procedures and tools used to collect and process samples (Gurtz and Muir 1994, Carter 

and Resh 2001).  Comparisons of the data derived from collections taken with various 

types of sampling equipment, subsampling counts, and levels of taxonomic resolution 

have provided a basis for evaluating some of the field and laboratory methods in use 

(Barbour and Gerritsen 1996, Courtemanch 1996, Lenat and Resh 2001, Resh and 

McElravy 1993, Resh and Jackson 1993, Vinson and Hawkins 1996).  Comparisons of 

how bioassessment data are analyzed have also been presented, as contrasts of different 

analytical approaches based on the same sets of biological data (e.g. Fore and Karr 1996, 

Reynoldson et al. 1997).  What has not been done for more than a few data sets (e.g. 

Houston et al. 2002, Cao et al. 2004) is to compare bioasessment results for coordinated 

side-by-side contrasts of methods that differ at each stage of the process, from field 

collection through laboratory processing and identification, to the analytical assessment 

of biological impairment.  This provides both the most realistic context for evaluation of 

the results produced from different monitoring programs, and the information needed for 

the calibration and interconversion of methods for promotion of interagency cooperation 

in developing biological criteria for water quality. 

 Organized bioassessment programs for the monitoring of water quality have been 

in operation in California since about 1993, the date of the first meeting of the California 

Aquatic Bioassessment Workgroup.  Several large programs involving extensive data sets 

have developed since that time including the work of the Aquatic Bioassessment 

Laboratory of the Department of Fish and Game, the US Forest Service on National 

Forest Lands, and the Lahontan Regional Water Quality Control Board in watersheds east 

of the Sierra Nevada (conducted by the University of California Sierra Nevada Aquatic 

Research Laboratory).  Each of these programs has used differing field and lab protocols 

for sampling, processing, identifying, and analyzing data.  Additional programs with still 

other methodologies exist in California, but this study contrasts these three larger 

programs that were also emphasized in a recent report on the status of bioassessment in 

California (Barbour and Hill 2003). 
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 The use of a performance-based method system (PBMS) has been suggested to 

evaluate the comparability of bioassessment methods (see Barbour et al. 1999).  The 

PBMS compares bioassessment results to a performance standard, and if performance 

measures meet or exceed the standard, the method is considered acceptable for use in 

monitoring.  The performance standards may be defined based on required data quality 

objectives of a program, or relative to a reference, or accepted, methodology.  Methods 

are compared based on performance characteristics that include precision, bias, 

discrimination power (of test from reference), and accuracy – especially in minimizing 

type II error rate (i.e. the frequency of not identifying a known impaired site to be 

impaired).  Using the PBMS will allow differences between bioassessment methods to be 

resolved and decisions made on what method(s) are most appropriate for defined data 

quality objectives. 

 The objectives of this study were to (1) compare common bioassessment methods 

used in California to evaluate differences in meeting PBMS criteria, (2) determine 

whether any bias in representing community structure exists between methods and if so, 

how data sets might be calibrated, (3) evaluate whether differences in field collection, 

laboratory processing, and data analysis affect the outcome of assessment of biological 

impairment, (4) provide explicit descriptions of the steps involved in predictive model 

development and IBI construction, and (5) examine the correspondence between IBI 

scores produced by different methods and environmental stressor gradients.  Relative 

costs and benefits related to the discrimination of moderate impairment levels were also 

considered. 

 

METHODS 

Forty streams of varied size (order, mean width, watershed area) were selected to 

represent both least-impaired reference sites and a variety of impaired sites in a 

geographic region restricted to the east slopes of the Sierra Nevada (Great Basin 

drainages between about 37º and 40º north latitude, and 118º and 120º west longitude).  

The same 40 streams were sampled at the same sites and on the same dates using each of 

the 3 primary methods, although the number of total samples taken by each method 

differed.  The impaired (test) sites were selected from disturbed landscapes, with clear 
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physical habitat degradation related mainly to livestock grazing and altered channel 

geomorphology (erosion and sediment pollution).  Reference streams were selected based 

on an initial screening for low upstream density of road crossings (a measure of 

watershed development), or low local bank erosion and minimal exposure to known local 

and upstream landscape disturbance (refer to Table 1). 

For the development of IBIs appropriate to habitat type, streams were grouped 

into large and small classes based on channel size (the wetted perimeter stream width) 

and upstream watershed area.  Small streams were those less than about 3 meters wide 

with watershed areas mostly less than 20 km2.   Large streams were greater than 3 meters 

width with watershed areas mostly greater than 20 km2.  Thirty streams were grouped in 

the large size class (19 reference and 11 test), and twelve streams in the small size class 

(8 reference and 4 test).  Two streams were borderline and were thus used in both stream 

classes. 

 

Sampling Protocols 

Physical Habitat and Water Chemistry 

Each site was defined as a 150-meter length study reach, located by GPS-UTM 

coordinates and elevation (near lower end of each site).  The longitudinal distribution and 

length of riffle and pool habitats were first delineated, and flagged for marking transect 

locations.  Slope of the reach was measured with an autolevel and stadia rod, and 

sinuosity estimated as the ratio of 150 meter to the linear distance between the upper and 

lower ends of the reach.  Bank and channel habitat were measured over the length of each 

reach along 15 transect cross-sections spaced at 10 meter intervals.  Water depth, 

substrate type and current velocity were measured at five equidistant points on each 

transect along with stream width, bank structure (cover/substrate type and stability 

rating), riparian canopy cover, and bank angle.  Bank structure between water level and 

bankfull channel level was rated as open, vegetated, or armored (rock or log), and as 

stable or eroded (evidence of bank erosion, collapse or scour scars).  Bank angles were 

scored as shallow, moderate, or undercut (<30°, 30-90°, and >90°, respectively), and 

riparian cover was measured from vegetation reflected on a grid in a concave mirror 

densiometer (sum of grid points for measurements taken at each stream edge and at mid-
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stream facing up- and downstream).  The type and amount of riparian vegetation along 

the reach was also estimated by qualitative visual evaluation.  The embeddedness of 

cobble size substrate was estimated as the volume of the rock buried by silt or fine sand 

for 25 cobbles (encountered during transect surveys or supplemented with random 

selected cobbles).  Discharge was calculated from each transect as the sum of one-fifth 

the width times depth and current velocity at each of the five transect points, and 

averaged.  A suite of basic water chemistry and related parameters were also measured at 

each site: dissolved oxygen, conductivity, pH, temperature, and turbidity.  

Documentation also included photographs taken at mid-stream looking upstream at 0, 50, 

and 100 meters, and downstream at 150 meters. 

 
UC-SNARL Protocol – Lahontan Water Quality Board 

Benthic macroinvertebrate sampling consisted of 5 replicate samples taken in 

riffle zones using a 30-cm wide D-frame kick-net, having a 50 cm length bag with 250 

µm mesh.  Each replicate was composed of a composite of three 30x30 cm sample areas 

(0.09 m2 each, 0.27 m2 total) taken across the riffle transect (or in upstream series for 

small streams) over zones of varied depth, substrate and current.  Sample transects were 

selected using a random number table for locations corresponding to a delineated riffle 

segment.  Each kick sample was taken using a mixture of feet and hands to dislodge and 

rub substrates for 30 seconds to one minute so that both mobile and attached invertebrates 

were washed off and into the downstream net being held against the bottom.  This 

composite of microhabitats was intended to represent varied microhabitat conditions and 

reduce the variability among replicate samples.  Samples were processed in the field by 

washing and removing large organic and rock debris in sample buckets followed by 

repeated elutriation of the sample to remove invertebrates from remnant sand and gravel 

debris.  The remaining rock and gravel debris was inspected in a shallow white pan to 

remove any remaining organisms including caddisflies with stone cases and shelled snails 

or other molluscs.  Elutriated and inspected sample fractions were then preserved in 

ethanol, and a small volume of rose bengal stain was added to aid in lab processing.  

Invertebrate field samples were subsampled in the laboratory using a rotating drum 

splitter, sorted under a stereo microscope at 10X magnification, and identified to the 
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lowest practical taxonomic level (usually genus; species or species groups when possible 

based on the availability of taxonomic keys including midges and mites; oligochaetes and 

ostracods were not further identified).  A minimum count of 250 organisms was removed 

from each replicate for identification (in practice averaging about 500 individuals).  All 

sample sorting was conducted to achieve <5% error in removal, and quality control 

verifications of every taxon identified in every sample was performed by the lead author.  

Unprocessed sample remnants were also searched (using a 3X magnification visor) for 

rare and large taxa not encountered in the processed sample, and single counts of those 

found were added to the total. 

 

California Stream Bioassessment Protocol (CSBP) - Department of Fish and Game 

Samples collected using this method were taken within the same study reach at 

locations adjacent to the first, third and fifth SNARL sample replicates.  Three replicate 

CSBP samples were taken using a 30-cm wide D-frame kick-net fitted with a 500 µm 

mesh net 50-cm in length.  Each replicate consisted of a composite sample taken from 3 

locations as in the SNARL method except that the collection areas were each 30-cm wide 

by 60-cm long (0.18 m2 each, 0.54 m2 total).  Samples were field-processed, preserved 

and stained as described above for the SNARL method.  Laboratory subsampling was 

performed by spreading the field sample over a large shallow white pan with a grid 

drawn on the bottom, and random-numbered grid sectors were selected and all organisms 

removed until reaching a fixed-count of 300 individuals.  The benthic invertebrates were 

identified at the same level of taxonomic resolution as the SNARL method except that 

midges were identified only to subfamily and all mites were left at Hydracarina.  Quality 

control checks of lab processing and identifications were performed as for the SNARL 

samples.  A rare and large taxa search was also performed as above. 

 

Utah State University Protocol – Region 5 US Forest Service (R5.USFS.USU) 

Samples were obtained as a single composite taken at 8 locations, each 30x30 cm 

in area (0.09 m2 each, 0.72 m2 total), in the 4 longest riffle units in the study reach (2 in 

each riffle unit selected at random from a 9-point grid).  When fewer riffle units were 

available, locations were assigned in proportion to the length of each unit.  Samples were 
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taken using a 30-cm wide D-frame kick-net fitted with a 500 µm mesh net 50-cm in 

length.  Samples were field-processed, preserved and stained as above.  Subsampling was 

performed as in the CSBP method but to a fixed count of 500 organisms.  Identifications 

were made at the same level of taxonomic resolution as in the SNARL method, including 

midges and mites to genus and some species groups.  Quality control checks of lab 

processing and identifications were performed as for the SNARL samples, as were 

checks for rare and large taxa.  Methods differences are summarized in Table 2. 

 
Analytical Methods 

  Data collected with the UC-SNARL and CSBP methods are typically analyzed 

using the multi-metric calculations recommended by the U.S. Environmental Protection 

Agency (Barbour et al. 1999) while data collected with the R5.USFS.USU method are 

typically analyzed using a series of multivariate statistical models first developed in Great 

Britain and referred to as the River Invertebrate Prediction and Classification System 

(RIVPACS).  In order to evaluate the field/lab and analytical methods in a controlled 

manner, we analyzed all 3 sets of methods using both the multi-metric models and the 

RIVPACS predictive models. 

 
Data Preparation 

  For the CSBP and R5.USFS.USU methodologies, large and/or rare organisms 

were sorted and distinguished from the organisms obtained in the subsampled section of 

the sample.  To avoid overestimating the abundance of these large and/or rare 

invertebrates, we first adjusted the final counts per sample by the fraction of the sample 

which was subsampled.  Following this adjustment, the large and/or rare invertebrates 

were added to the sample data. 

 
Multi-Metric Calculations 

  Our calculation of a multimetic index (referred to herein as an Index of Biological 

Integrity or IBI) closely follows the recommendations and procedures outlined in the U.S. 

EPA Rapid Bioassessment Protocol document (Barbour et al. 1999). 
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Metric Choice 

  We calculated 69 metrics for each sample across the 3 methodologies.  These 69 

metrics were created from 28 metric classes by slightly varying the calculation for a 

metric (e.g., taxa richness standardized to different sampling levels using a rarefaction 

procedure, dominance by variable numbers of the most common taxa).  The full suite of 

metrics evaluated is listed in the Appendix.  We selected 15 of these metrics for inclusion 

in a composite multimetric IBI.  Calculation of these 15 metrics is further detailed in the 

Appendix.   

 
Evaluation of Candidate Metrics 

  For all multimetric analyses, the 40 sampling sites were divided into 2 classes of 

streams, “large” and “small”.  Two of the 40 streams fell into an intermediate class 

between the large and small streams.   These 2 sites (both were reference / unimpaired 

sites) were included in both the large and small classes of streams in order to increase the 

sample size for the reference distribution and to handle the ambiguity of assigning these 

streams to one of the size classes when they had characteristics of both. 

  Each individual metric was then evaluated for its discriminatory power by 

examining the proportion of “test” (i.e., impaired) streams in each stream class that 

exceeded (or fell below for reverse scale metrics) various quantiles of the reference 

distribution.  The use of overlap based on quantiles essentially evaluates the signal-to-

noise ratio by looking, simultaneously, at the separation between the centers of the test 

and reference distribution while also considering the spread of values around these 

centers.  The sample sizes used for this study (19 large reference and 8 small reference 

streams) created, at times, discrete jumps between the values for adjacent quantiles.  

Thus, rather than choosing a single quantile for all comparisons of overlap between 

reference and test streams, we evaluated this overlap more broadly by considering 

multiple quantiles for each metric.  For the 19 large reference streams, we used thresholds 

ranging from the lowest/highest value up through the 6th lowest/highest value; these 

corresponded to the the 5th, 11th, 16th, 21st, 25th, and 32nd quantiles.  For the 8 small 

reference streams, we used thresholds ranging from the lowest/highest value up through 

the 3rd lowest/highest value; these correspond to the 13th, 25th, and 38th quantiles.   
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  We note here that the definition of an observed quantile (or percentile) for an 

ordered set of observations is somewhat ambiguous.  By some definitions (e.g., S-plus 

statistical software), the lowest value corresponds to the 0th observed quantile and the 

highest value corresponds to the 100th quantile.  For small sample sizes, however, the 

minimum and maximum will substantially overestimate and underestimate (respectively) 

the 0th and the 100th quantile of the true distribution.  A more intuitive definition of a 

quantile, and one which minimizes the bias for small sample sizes, is to include the 

minimum and maximum value as data points in the tails of the distribution and to define 

the quantiles as the proportion of sites greater than (or less than) a given ordered value.  

Thus, instead of the minimum value out of 20 observations representing the 0th quantile, 

this more intuitive definition would say that 19 of 20 observations (95%) lie above this 

minimum value and would therefore identify the minimum value as the 5th quantile.  This 

latter and more intuitive definition is followed throughout this report.  These two 

definitions, of course, only represent issues of semantics.  The crucial information is what 

specific cut-off is used (e.g., the minimum value of the reference distribution) and not the 

label for that cut-off.  We highlight these subtle nuances in quantile definitions so that 

readers are clear what values we have used for cut-offs when we mention the quantile 

chosen, and to raise critical awareness of the ambiguity in various references to quantiles 

and percentiles in the literature, particularly for distributions with small sample sizes. 

  From the suite of tables we generated to document the overlap between test and 

reference streams for the different quantile thresholds, we repeatedly filtered out metrics 

based on three criteria in order to narrow the list to a set of core metrics which could be 

included in an IBI calculation.  These three criteria were:  1) Power - the actual 

magnitude of a metric’s discriminatory power (i.e., the proportion of test streams 

identified as impaired); 2) Consistency - the degree to which a metric provided 

discriminatory power for both large and small streams as well as across different quantile 

thresholds;  and 3) Uniqueness - the extent to which a metric provided information 

unique among the remaining candidate metrics and which therefore provided some 

independent discriminatory power.  As these three criteria were simultaneously evaluated 

and as these criteria could only be partially quantified, this selection of the best metrics 

for inclusion in an IBI was a somewhat subjective step in the IBI development.  It is 
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possible that somewhat different final subsets of metrics would be selected by a different 

group of researchers conducting the same analysis because of this inherent subjectivity.   

 

Creation of the IBI 

  The above selection procedure resulted in the selection of 15 primary metrics as 

the basis of a multi-metric Index of Biological Integrity (IBI).  Following the 

recommendations in the Rapid Bioassessment Protocols manual (Barbour et al. 1999), we 

converted the individual scores for the different metrics to standardized scores on a 

continuous 0-10 scale so that they could be aggregated into a multi-metric IBI.  The 

median value of the reference stream distribution was scored as a 10 and any value 

greater than or equal to this median reference value likewise obtained a 10.  Similarly, the 

minimum value of the test stream distribution was scored as a 0 since this represented the 

actual worst empirical value attained in our study and thus the potential lowest value any 

stream might attain for that metric.  Any metric score between the reference median and 

the test minimum value was scored by interpolating between these two numbers.  For 

example, total taxa richness for our large reference streams using the SNARL methods 

had a median value of 45 taxa, and the minimum among all large test streams using the 

SNARL methods was 24 taxa.  The standardized scoring for raw taxa richness was 

therefore: 

   Richness Score = 

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

−
−

⋅

≥
=

otherwiseRichness
taxarichfor
taxarichfor

2445
2410

4510
240

 

Values for the 15 core metrics were converted to standardized scores using this 

procedure.  The 15 standardized scores were then added and the total score divided by 1.5 

to yield the full multi-metric Index of Biological Integrity (IBI).  This final IBI 

theoretically ranged from 0 to 100 with equal weight given to each of the 15 core metrics. 

  In order to minimize potential redundancy among the metrics composing the IBI 

score, we also created another IBI based on a subset of these metrics.  This subset was 

selected such that correlation among metrics was minimized, discrimination was 

maximized, and conceptual distinctness was maintained among the variables.  Six 
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variables were selected for this reduced IBI (Biotic Index, Taxa richness, Trichoptera 

richness, Percent EPT richness, Percent Shredders, and Percent Tolerant Taxa), and 

evaluations of this model indicated comparable performance to the 15-metric IBI in terms 

of variability and discriminatory ability. 

 

Multivariate Predictive Model (RIVPACS-type Model) 

Grouping Reference Sites:  Cluster Analysis 

  The first step in a RIVPACS-type predictive model is to classify reference sites 

into homogenous groups based solely on the biological information at those sites.  A 

number of potential methods exist for grouping such multivariate data, but many 

predictive model analyses have used cluster analysis techniques because they have 

worked as well or better than other grouping methods (Reynoldson et al. 1995, Marchant 

et al. 1997, Moss et al. 1999, Hawkins et al. 2000).  The results from a cluster analysis 

depend both on the similarity measure used and the clustering algorithm used in the 

analysis.  We used two common methods (Bray-Curtis distance on proportional data; 

Sorensen’s similarity on presence/absence data) and found little difference in the results.  

As a result, we present the final results based only on the use of Sorensen’s similarity for 

presence/absence data. 

  Because little consensus has been established on the best clustering algorithms, 

we used a number of recommended clustering methods and evaluated the consistency of 

patterns across methods before establishing stream groups in the data.  The clustering 

methods used were:  1) Ward’s clustering; 2) Flexible Beta Weighted Pair Group Means 

with Arithmetic averaging (Flexible Beta WPGMA; Flexible Beta UPGMA was 

unavailable); 3) Unweighted Pair Group Means with Arithmetic averaging (UPGMA) 

using Average linkage; and 4) K-means clustering.  Analyses were conducted using a 

specialized clustering procedure written by D.L. Lorentz for S-Plus and verified for select 

clustering outputs using  established analytical procedures in S-Plus and SAS. 

  Using different values for Beta in the Flexible Beta WPGMA and different values 

of K in K-means clustering, we evaluated the grouping patterns of sites for the three 

primary sampling methods (CSBP, R5.USFS.USU, SNARL) and determined the 

grouping of reference sites that appeared most stable across clustering methodologies and 

 11



that gave relatively large numbers of sites in each individual group.  We determined that 

the clustering analyses showed the most distinct partitioning of sites when the data were 

limited to 3 or 4 groups of sites.  The number of stream in each group ranged from 4 to 

15 streams, with different sites being grouped together for the SNARL, CSBP, and 

R5.USFS.USU field and laboratory methods. 

  As with the multimetric IBI calculations, it is important to note that this 

discriminant model selection involves a number of subjective decisions about which 

variables to use in the model, the number of variables to use, and the criteria for a 

successful model (e.g., apparent and cross validation error rates).  Alternative models to 

those listed above, with either different variables and/or with different numbers of 

variables, achieved classification rates comparable to the final models chosen but were 

not selected.  The final model, in each case, was that suite and number of variables that 

we felt provided the highest correct classification rates with appropriate variables.   

 
Predicting Membership in Groups Based on Environment Data:  Discriminant Analysis 

  A separate discriminant analysis model for each of the 3 methods was then 

constructed where only the environmental characteristics at each site were used to 

differentiate among the 3 groups of streams identified in the above clustering. 

  Sites were assigned to groups based on the results from the cluster analysis, and 

environmental variables were selected for the discriminant model based on two criteria.  

First, only variables which were unlikely to be affected by human disturbance were 

included in the model.  The candidate variables which met this criterion were: elevation, 

latitude, longitude, sampling date, azimuth, distance to headwaters, watershed area, slope, 

depth, width, conductivity, alkalinity, percentage of boulder outcrops, and 2 climatic 

statistics (annual precipitation, number of days with precipitation) obtained through 

Climate Source Inc. (these climatic statistics are continuous coverages across the United 

States based on both observed and modeled climatic data). 

  Second, we proceeded through a series of manual variable selection procedures to 

determine the optimal set of variables for discriminating among groups of streams.  The 

performance of each model was determined from both the apparent error rates and cross-

validation error rates for each model.  The apparent error rates are simply the number of 
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sites which are classified incorrectly divided by the total number of sites.  The cross-

validation error rates are more robust measures of model performance because they 

essentially construct the discriminant model with a single site removed from the data set, 

predict which group this omitted site would be classified to using the discriminant model, 

compare this classification to the actual group identity of the site, and then repeat the 

process for each stream.  Because of the independence between model and prediction in 

the cross-validation error rate, we relied more heavily on this error rate estimate when 

evaluating competing models. 

  The final discriminant model was selected as that model providing the lowest 

apparent error rates and cross-validation error rates with the greatest number of 

meaningful predictor variables.  The final models for each the three methods contained 4 

environmental predictor variables:  

   R5.USFS.USU    Conductivity, Longitude, Azimuth, and Days of 

Precipitation 

   SNARL      Alkalinity, Elevation, Sampling Date, and Annual 

Precipitation 

   CSBP      Elevation, Sampling Date, Width, and Slope 

 

As with the multimetric IBI calculations, it is important to note that this discriminant 

model selection essentially involves subjective decisions and the end result depends on 

the group of researchers conducting the analysis.   

  The final discriminant models were then used to predict the probability of each 

site belonging to one of the 3 or 4 groups of reference streams (e.g., Stream K might have 

a 0.65 probability of being in group 1, a 0.20 probability of being in group 2, and a 0.15 

probability of being in group 3).  This trio of probabilities of group membership were 

estimated both for test sites (not previously classified into a group) as well as the original 

reference streams (whose group membership had already been determined though the 

cluster analysis based solely on biological data).  We used a proportional prior for these 

predictions so that any new site had a larger probability of belonging to the group of sites 

with the largest number of members than the group of sites with the smallest number of 

members.   
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Calculating the Expected Number of Common Taxa 

  The expected number of common invertebrate taxa for each stream (the “E” in the 

“O/E” metric) was then estimated by predicting the probability that each invertebrate 

taxon would be present at a site and then summing these probabilities for the most 

common species.  The probability that an invertebrate would be present at a site was 

calculated as a weighted mean value of the observed proportion of streams where that 

taxon was found in each of the 3 groups of reference streams.  Specifically, for each 

reference stream group, the proportion of streams with a given taxon was calculated (e.g., 

Calineuria californica was found at 12 of the 15 streams in group 1).  The probability 

that a species was then present at any given stream (reference or test) was calculated by 

multiplying the proportion of streams in each group with that species by the probability 

that the stream in question belonged to each group, and then summing these quotients.  

This procedure for estimating the probability of finding a specific invertebrate taxon at 

each site was then repeated across all taxa found in this study and across the 3 field/lab 

methods. 

  A pair of examples will clarify these calculations.  Suppose Baetis was found at 8 

of 16 streams in reference group 1, 5 of 5 streams in reference group 2, and 4 of 4 

streams in reference group 3.  For stream X with probabilities of membership (based on 

environmental conditions) to groups 1, 2, and 3 of 0.75, 0.15, and 0.10, respectively, the 

final probability that Baetis will be present at stream X from this RIVPACS-style model 

will be 0.625: 

625.0

10.0
4
415.0

5
575.0

16
8)(Pr

=

•+•+•=XstreamatBaetis
 

For Baetis at stream Z, which has probabilities of being in groups 1, 2, and 3 of 0.05, 

0.50, and 0.45, respectively, the final probability of Baetis being present at stream Z is 

0.975: 

975.0

45.0
4
450.0

5
505.0

16
8)(Pr

=

•+•+•=ZstreamatBaetis
 

Thus, for stream X, the lower probability of being in groups 2 and 3 translates into a 

lower probability for Baetis being present at the site.  For stream Z, the high probabilities 
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of being in groups 2 and 3 translates into a high probability of Baetis being present at the 

site. 

  All invertebrate taxa with a probability of being present at a site less than 0.50 

(i.e., less than a 50% predicted probability) were then removed from the analysis.  

Researchers using RIVPACS-style predictive models have typically found that a 

moderate cut-off for excluding less common taxa from the analysis (such as 0.50) gives 

the clearest discrimination between reference streams and impaired streams (Marchant et 

al. 1997, Hawkins et al. 2000).  Essentially, the predictive models perform best when 

restricted to predicting the occurrence of common taxa. 

  The final expected taxa richness (“E”) for each stream in the study was then 

calculated as a simple sum of the predicted probabilities for those taxa with probabilities 

greater than 0.50. 

 
Calculating Observed Number of Common Taxa and the O/E Metric 

  The observed number of common taxa (the “O” in the “O/E” metric) for each site 

was then calculated as the sum of the common taxa present which were used to calculate 

the “Expected” number of taxa.  Thus, for every site, all taxa whose predicted probability 

of being at that site was less than 0.50 were removed from the data for that site.  The 

“Observed” number of common taxa was then the sum of the number of remaining taxa 

which were actually observed at that site.  As such, this observed number of taxa is only 

an estimate of the number of the most common invertebrate taxa which were present at a 

given stream.  Finally, the O/E metric was calculated for each site as the simple ratio of 

the “Observed” number of common taxa to the “Expected” number of common taxa. 

 

Cost-Benefit Analysis 

 Evaluation of alternative assessment approaches requires not only that the 

performance characteristics are compared but that the cost:benefit ratio of the methods 

are considered.  Sustaining monitoring programs will require that a balance is achieved 

between the accuracy and utility of the assessment results and the expense in time and 

cumulative effort.  An estimate of the relative cost of each method was obtained from 

field and lab observations of person-hours required to complete tasks of sample 
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collection, processing, sorting and identification and counting as well as habitat surveys.  

The data analysis phase was accounted for in this cost estimation in qualitative terms of 

the level of expertise and number of steps required to obtain complete results. 

 

Performance Based Method System 

A wide variety of metrics were screened for inclusion in IBI development 

according to how well they produced separation of test and reference sites and were least 

variable.  Screening resulted in selection of 15 metrics, providing a standard system for 

comparison of the same set of indicators across all methods (see Appendix). 

Methods were contrasted based on the following PBMS criteria, as described in 

technical guidance documents (Barbour et al. 1999, Barbour and Hill 2003, Diamond et 

al 1996): (1) precision, defined using the coefficient of variation (CV) among reference 

streams as a standardized measure of variability in the metrics used to develop the IBIs 

(the number of metrics meeting data quality objectives set at CV values of 20% and 

25%), and the CVs of the multimetric IBIs defined for large and small stream classes, and 

for the observed over expected taxa ratio (O/E) criterion of the multivariate predictive 

model, (2) bias in applicability to different stream types, as precision differences for a 

given metric or score when compared between different habitats or ecoregions (defined 

here as the ratio in CV values between metrics from reference streams of different size 

class habitat types), where a ratio near 1.0 would indicate least bias, (3) discriminatory 

power or average sensitivity, defined as the ratio of test to reference mean values (power 

increased the smaller the ratio) or as the difference between reference and test means 

divided by the reference standard deviation (sensitivity increases with the magnitude of 

this value), and (4) accuracy in minimizing type II error (impaired sites identified as 

such) determined from (a) the proportion of test sites overlapping reference sites after 

successive removal of the lowest references (the proportion removed corresponding to a 

quantile or type I error rate), or (b) the distribution of t-statistics calculated for each test 

site (type II error rate here is the fraction of test sites that do not exceed the t-value at a 

given type I error rate and degrees of freedom) =  
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Though we could not know a priori that test sites were impaired, it could be shown that 

the test sites were exposed to stress or disturbance and these formed a class distinct from 

the undisturbed or minimally exposed reference sites (refer to Table 1, listing stream 

classification). 

 

Inter-calibration Among Methods 

 Given the inevitable differences among methods for bioassessment surveys across 

labs, regions, states, and countries, the greatest utility of these bioassessment data will be 

realized when either calibrations among methods are developed or when the methods can 

be demonstrated to give inter-changeable results.  For the three field and laboratory 

methods considered in this study, a number of such differences existed that could 

conceivably produce different assessment results for the same stream.   In order to gain 

the broader ability to use all data collected via these methods in unified assessments of 

California streams, it is therefore necessary to determine which standardizations or 

calibrations of data sets are needed (if any) to achieve an acceptably high level of 

correspondence among results for the different methods. 

 Given the lower costs associated with single composite samples (e.g., 

R5.USFS.USU method), many groups are considering adopting this field/laboratory 

procedure in order to save money and expand the number of sites surveyed given budget 

constraints.  As a result, we focused on conversions of the replicated methods (CSBP, 

SNARL) toward the single composite samples that are likely to be used in most future 

monitoring efforts, particularly the SNARL conversion to R5.USFS.USU method since 

the CSBP to R5.USFS.USU comparison and inter-calibration has recently been 

completed for a large California data set (Ode et al. in press). 

 Two methods were utilized for comparing the results among methods before and 

after any data standardization step.  First, the final multi-metric IBI scores for each 

stream were correlated among methods to determine the strength of the relationship 

between the final results from the two methods.  For these analyses, small and large 

streams were analyzed separately, and then all streams were analyzed together.  The 
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results were generally comparable for the different stream groupings so the results from 

the analysis of all streams together are therefore presented in this paper.  The second 

method of comparing the results from different methods was to calculate a multivariate 

dissimilarity (Bray-Curtis distance measure) between the samples for the same stream 

using the two methods, and then examine the distributions of these similarities across all 

samples.  To provide a scale for these dissimilarity values in terms of expected 

differences among any two samples taken from a stream, the 10 combinations of pairings 

of replicate SNARL samples at each stream were used to calculate 10 independent 

within-method dissimilarity values for replicate samples, these 10 values were averaged 

for each stream, and then the distribution of these within-method dissimilarities was set 

as the expected maximum similarity that would likely be obtained among replicate 

samples using the same methodology. 

 For data standardization, our analyses focused on three primary differences 

among the methods:  (1) different numbers of invertebrates identified for each stream; (2) 

different mesh sizes used in the field; and (3) different handling of large and/or rare 

invertebrates not collected in the subsample.  For the different numbers of invertebrates 

processed and identified for each stream, multiple re-sampling methodologies were 

thoroughly tested to determine whether standardizing the more intensive efforts (i.e., 

SNARL and CSBP) to the 500-counts of the R5.USFS.USU method produced more 

comparable data, and whether the method of re-sampling affected the final comparisons.  

The two re-sampling approaches most completely evaluated were:  (1) a simple pooling 

of all identified invertebrates and random sampling without replacement from this overall 

pool; and (2) a stratified random sampling with equal numbers of individuals re-sampled 

without replacement from each replicate to more closely mimic the equal probability of 

any invertebrate being collected in the final 500-invertebrate subsample.  For the 

potential bias introduced by different field mesh sizes, we determined the extent and 

frequency of over-sampling via the 250 µm net by comparing the absolute density 

estimates and the proportional abundance estimates for each stream between the 250 µm 

method (i.e., SNARL) and the two 500 µm methods both individually and averaged 

together.   For common taxa showing consistent differences across streams and for both 

the density estimates and the proportional abundance estimates, probabilistic corrections 
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to the 250 µm method (i.e., SNARL) were calculated for these taxa.  After first 

standardizing the SNARL data to a 500 invertebrate sample for each stream, the SNARL 

data were “corrected” for the apparent higher collection rate of these mostly small 

invertebrate groups with the 250 µm mesh nets.  Finally, the different handling of large 

and/or rare invertebrate groups was evaluated by first standardizing the sampling of the 

SNARL data to a single 500 invertebrate composite sample for each stream, and then 

adding the large/rare invertebrates collected for that stream from the R5.USFS.USU 

samples to the standardized SNARL samples.  When possible, multiple re-samplings of 

the data were performed for each standardization technique to evaluate the variability in 

the responses. 

 

RESULTS 

The average metric precision, expressed as the mean CV value for the 15 metrics 

selected for IBI development, showed that SNARL > R5.USFS.USU > CSBP for 

reference groups over all streams (Figure 1).  This was also expressed in a greater number 

of the metrics calculated from SNARL reference data having CV values below data 

quality objectives set at either 20% or 25% (Figure 2).  When metrics were standardized 

and combined into an IBI, and when the variation in O/E values were compared, little 

difference between methods was apparent in the CV values, and reference stream scores 

were all near or below a DQO of 20% (Figure 3).   

Comparing the metrics and IBIs calculated from the CSBP data revealed that CV 

estimates for the large and small stream class types were not equally precise – there was 

bias in this performance characteristic (small streams are more variable) that did  not 

appear in the SNARL or R5.USFS.USU data (with CV ratios near unity, Figure 4).  

Based on comparisons of reference and test means, discrimination power shows no 

substantial differences between methods (Figure 5) and though sensitivity shows some 

differences between methods, there were no consistent patterns from one measure to 

another (Figure 6).  Correlation among the methods in rating of stream quality though IBI 

and O/E indicators shows close correspondence for most sites over a gradient of rankings 

relative to the SNARL method (Figures 7, 8 and 9).  Stream reaches of high quality show 

the best agreement, though there were several instances where CSBP and R5.USFS.USU 
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methods under-rated reference streams (for both large and small streams) and some 

tendency for these methods to over-rate test streams relative to SNARL.  The agreement 

among methods placing the site Owens.abovetun in the test range shows this site was 

misclassified as a reference, and that the WWalker.Pickel test site was unimpaired 

(Figure 7).  Kirman and Slinkard Creeks were placed by all methods in an intermediate 

IBI range for small streams, but the reference (Slinkard) may have been over rated, and 

the test (Kirman) only moderately impaired (Figure 8).  Correlations between method 

pairings were all high (R2>0.80, except small stream IBI SNARL vs CSBP, R2=0.75).  

Results were similar for the 6-metric IBI, but only the 15-metric IBI results are presented 

for brevity.  The O/E values generated from the predictive modeling analysis also show 

that the methods produced similar ratios for each stream (Figure 9). 

The accuracy in assessment is related to the discrimination and sensitivity 

measures, but more explicitly defines the chances of making errors in not identifying a 

test stream that is impaired (type II error), or in indicating that an unimpaired (or 

reference) stream is impaired (type I error).  Another way to think about these errors is 

that minimizing type II error would aid in the protection of the biological integrity of 

aquatic habitats while minimizing type I errors serves the regulated community in 

providing reasonable standards in the designation of impairment because it implies a 

lower criterion for reference or unimpaired sites.  It is also important to note that the error 

rates defined assuming those sites defined a priori as test sites truly are impaired may 

lead to an over-estimate of type II error if these sites were actually misclassified. 

 There are differing ways that a threshold criterion for designating impairment can 

be defined.  Successive removal of the lowest scoring reference sites from the pool of 

references gives the quantile for type I error as that fraction of the number of sites 

removed.  The fraction of test sites still overlapping the resulting range is the type II error 

rate.  Alternatively, the threshold for impairment can be defined according to the standard 

deviation of the reference data set, with type I errors corresponding to the mean minus 2 

SD (alpha=0.05), 1.65 SD (=0.10), or 1.3 SD (=0.20).  Using either the quantile or the 

standard deviation, accuracy in assessment can be attained for type II error in the range of 

80-90% at about this same level of type I error rate (Figures 10 and 11). 
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The cost of field and laboratory efforts for each method was evaluated from 

records of the effort necessary to complete all tasks related to sample collection, 

processing, sorting, counting and identification, and including field habitat surveys 

(Figure 12).  The field efforts for all methods were nearly equal and comprised a smaller 

fraction than that required in the laboratory where the number of replicates in large part 

contributed to the SNARL method requiring 1.5 to 3 times the effort of CSBP and 

R5.USFS.USU, respectively.  Data analysis efforts were more difficult to evaluate 

because expertise in statistical methods was more relevant than time requirements.  

Multivariate analysis involves a step-wise approach to model development requiring 

knowledge of complex methods while multimetric data analysis used only a simple 

combination of scaled metrics for IBI development.  Predictive modeling may therefore 

require a greater initial investment of time or expense in statistical consultation. 

Discriminating intermediate levels of impairment is an important aspect of 

certainty in defining the extent of impact to a site and also provides a basis for the 

regulatory process of assigning different categories of aquatic life use attainment.  When 

sharp transitions exist in the distribution of IBI values from impaired test sites to 

unimpaired reference sites, and few reference sites are transitional, it should be possible 

to distinguish with greater certainty where environmental thresholds for impairment exist, 

and determine which test sites have reduced or intermediate levels of biological 

impairment.  Contrasts of the ranked distribution of IBI values for all streams (small and 

large pooled) shows that the SNARL method has a steeper slope interval or transition, 

and fewer reference sites intergrading with test sites than the other methods (Figure13). 

In order to examine the efficacy of IBI scores in detecting human impairment to 

water and habitat quality, environmental stress gradients among the sample sites were 

constructed from surveys of particle size composition, riparian cover, and conductivity.  

These measures were selected to reflect livestock grazing and channel alteration effects 

on erosion and sedimentation, bank exposure, vegetation loss, and agricultural irrigation 

return flows.  The IBI scores produced by each method over all streams were then plotted 

for each stressor (Figures 14, 15 and 16).  These graphs revealed apparent thresholds of 

biological impairment for each stressor, with the SNARL-derived scores exhibiting the 
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clearest distinction of effect level.  The IBI scores were effective in detecting impairment 

related to the suspected sources of human disturbance. 

The inter-calibration of data sets generally indicated the only data standardization 

needed to produce higher correspondence between the sampling methods was the 

standardization to equal numbers of identified invertebrates for each stream (Table 3).  

Specifically, the correlations between IBI scores between any two methods, before or 

after data standardizations, were always between 0.92 and 0.95 (0.84 and 0.91 R2).  No 

consistent increase or decrease in these correlations was obtained by any data 

standardization.  By contrast, the between-method similarity improved substantially by 

standardizing to 500 invertebrates for each stream.  The within-method Bray-Curtis 

distance was 0.32 as estimated by the complete set of permutations of SNARL replicates 

(recall that a Bray-Curtis distance of 0.00 means no difference between samples while a 

B-C distance of 1.00 means no shared taxa and thus no similarity in abundance between 

the two samples; a value of 0.32 thus indicates moderately strong similarity among 

replicates within a method).  The SNARL to R5.USFS.USU between-method B-C 

distance averaged 0.38 originally, but decreased to 0.33 upon standardizing the SNARL 

data to 500 invertebrates per stream (Table 4).  Thus, while the univariate correlation did 

not show any substantive change through data standardization, the multivariate similarity 

analyses indicated that between-method similarity could match that of within-method 

similarity if the data were standardized to 500 invertebrates per stream.  Even these 

improvements, however, were modest in magnitude relative to the high original 

correspondence among the different methods (original R2=0.88 between methods; 

original 0.38 Bray-Curtis distance between-methods vs. 0.32 within-method). 

 It is important to note that among these results, the correction for differential 

sampling by the 250 µm and 500 µm methods was not an important component of the 

data standardizations.  Consistent differences for select taxa were observed (especially 

smaller taxa such as Baetis and various Chironomidae midges), but the most striking bias 

among the sampling methods was actually the substantially lower density estimates 

obtained using the CSBP field and lab methods.  Across all streams, the CSBP methods 

typically under-estimated densities for all invertebrates by approximately 50%.  Because 

this was seen only for the CSBP and not the R5.USFS.USU method, we suspect that this 
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undersampling was unrelated to mesh size.  The more likely cause of the lower density 

estimates were the greater area sampling for each kick (1 ft by 2 ft compared to 1 ft by 1 

ft) and both the possibility that this larger area was not sampled as thoroughly and that 

the greater distance from the net mouth resulted in a greater fraction of organisms 

dislodged from the substrate passing around rather than into the sampling net.  Because 

the differences for specific taxa between the CSBP and SNARL methods were similar to 

the differences between the R5.USFS.USU and SNARL methods, there appeared to be no 

taxon-specific bias from this under-sampling by the CSBP method.  Instead, similar 

fractions of all taxa appeared to be under-sampled using this method. 

 

DISCUSSION 

The use of differing methodologies to collect, process, identify and analyze 

samples of stream macroinvertebrates for bioassessment evaluations of water quality 

creates potential discrepancies in comparing results and in the assessment conclusions 

drawn.  This study directly addressed how the combined differences between varied 

methods affect the comparability of results.  Using a performance-based methods system 

to assess precision, bias, discrimination, and accuracy, three dissimilar methods were 

found to exhibit only small differences in performance, and closely correlated assessment 

scores, whether derived from multimetric IBIs or multivariate predictive models.  The 

consistent agreement across indicators produced by different bioassessment procedures 

suggests that output is often directly comparable, data sharing is possible, and that we can 

have confidence in applying certain alternative techniques to the measurement of 

biological health in streams.   

The need for conformity in bioassessment methods has been identified primarily 

as enabling data sharing among agencies.  Use of uniform methods could permit 

assessments over broader geographic areas using data combined from different sources, 

decrease duplication of effort (cost savings), and minimize the potential for conflicting 

interpretation of results.  Another benefit of having a common foundation for evaluating 

water quality status and trends is that the reporting of ambient conditions over broad 

regions can be unambiguously understood by the public without any need for adjustment.  

An alternative view is that data-sharing from programs that together could cover large 
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geographic areas is not often useful or advisable because stream communities between 

distant areas share less biogeographic affinity (especially in the western United States) 

because they come from habitats that may not have common species pools contributing to 

their assembly.  Under these circumstances the differences between streams may have 

less to do with detecting impairment than natural differences in faunal composition.  

Furthermore, duplication of effort is probably infrequent (from different management 

jurisdictions) and agreement among results from different approaches may actually 

strengthen interpretation, making conclusions more sound through cross-confirmation.  

Where sharing of data can demonstrably improve bioassessment efforts, it may be 

sufficient to have a means of calibrating or converting results to the lowest common 

denominator methodology.  It might also be argued that programs that have established a 

legacy of information through long-term data collection should maintain methodology for 

the sake of internal consistency rather than expensive re-sampling of existing study sites.  

As we evaluate the needs for data sharing we must consider not only what could be 

gained, but what might be lost or not effectively achieved given differing monitoring 

objectives. 

 Despite some differences in metric precision and slight bias in taxonomic 

representation, the PBMS contrasts showed there was broad agreement in site assessment 

among the methods and similar accuracy in distinguishing reference from test sites.  Only 

in discerning intermediate levels of impaired biological condition were differences more 

apparent.  The sigmoidal response function of ranked IBI scores suggest that as habitat 

conditions grade from impaired to unimpaired, the threshold for the changes (slope and 

inflection points) may be more clearly defined by the SNARL method than for CSBP or 

R5.USFS.USU (Figure 13).  In addition, fewer reference sites in the SNARL data set fall 

within this transitional range of intermediate impairment.  As with classic dose-response 

curves, these properties may permit an improved distinction of lethal from sub-lethal 

conditions and critical toxicity levels.  Plots of the relation of IBI scores to stream 

degradation did indeed reveal loss of biological integrity over environmental stress 

gradients at apparent threshold levels (Figures 14, 15, 16).  Sedimentation measured by 

the dominance of small particle sizes (fines, sand, gravel) above 60% of total 

composition was associated with IBI scores reduced below a reference level of 80 (Figure 
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14).  This dose-response threshold was more clearly defined by SNARL samples than the 

other methods (fewer sub-threshold points fell below an IBI of 80 and most test sites 

were distributed above the stress threshold and showed a general graded decrease with 

dosage).  Similarly, thresholds above a conductivity of 200 µSiemens (Figure 15), and 

below a riparian vegetation cover of 30% (Figure 16), were most obviously exhibited by 

the SNARL data set.  Distinct sigmoid data distributions provide clearer patterns for 

identifying ecotoxicity levels for environmental stressors, and for establishing 

management practices and biological criteria targets for recovery.  The designation of 

aquatic life use attainment categories also depends on being able to define levels of 

impairment.  The terms “not supporting” and “partially supporting” might be defined 

according to whether a test site falls into the lowest or transitional portions of the 

distribution (respectively), providing a means of prioritizing control and cleanup of 

pollution sources as directed by the Clean Water Act. 

 The greater laboratory effort required for the 5-replicate SNARL samples, even 

with the benefit of improved resolution of intermediate levels of impairment, may not be 

practical in many cases, but existing data may still be used to supplement samples 

collected using other methods.  This potential to interchange data sets is highlighted by 

the results from the comparisons among standardized data sets.  Univariate IBI 

correlations were as high initially with raw assessment scores as they were following a 

broad suite of data standardizations and conversions.  Although the multivariate 

characterization of the community became more consistent following these data 

conversions (particularly standardization to equal numbers of invertebrates processed in 

the lab), the initial high correlations among IBI scores for the three methods without 

standardization and the lack of improvement of these correlations indicate that the 

methods produce generally consistent results and that the data collected by one method 

can be used in data sets composed primarily of data derived from different methods.  The 

only substantive data conversion that should be considered is standardization to equal 

numbers of invertebrates for all samples.  Although not critical for the univariate methods 

evaluated here, all three methods considered had high counts (typically 500-1500 

invertebrates per stream) and the differences may have attenuated at this count along the 

species accumulation curves (Vinson and Hawkins 1996).  In general, standardizing data 
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sets to equal numbers of individuals makes intuitive sense, can lead to improved 

correspondence among assessment methods, eliminates the possibility of variable counts 

influencing the final results, and is relatively easy to implement using various statistical 

and database software. 

 Though the use of RIVPACS predictive models typically involves large data sets 

(hundreds of sites, e.g. Hawkins et al. 2000), the intent of the contrast of methods 

presented here was to evaluate relative effectiveness given the same data set size.  An 

added cost of the RIVPACS approach may then be that effective assessment using the 

recommended data requirements might only be attained with more extensive sampling 

and laboratory effort.  Other sample effort issues that could be considered are any 

changes in method performance that might accompany (1) reducing the SNARL 

replication from 5 to 3, (2) using genus-level taxonomic resolution of midges and mites 

for CSBP, (3) pooling of all samples in replicated methods (SNARL and CSBP) and 

comparing fixed and equal counts of 500 (count for R5.USFS.USU), (4) replicating 

sampling from composites collected over the entire reach rather than composites within 

the same riffle in each reach. 

Misclassifications of two sites initially assigned to reference and test groups for 

large streams were indicated by accordance of all three methods (see low and high IBIs 

for Owens.abovetun and WWalker.Pickel, respectively, in Figure 7).  The Owens River 

site was used as a local upstream control to evaluate conditions above and below inflow 

from a diversion tunnel but otherwise is a channel exposed to flow modification and bank 

disturbance associated with a long history of livestock grazing; and the West Walker 

River site was in a livestock grazing allotment but showed stable channel habitat.  This 

rationale argues that the bioassessment data was not in error, but initial site classification 

was wrong, so the type I/II error rates (Figures 10 and 11) were overestimated. 

The composite IBI scores and predictive model O/E values yield comparable 

assessments over all streams examined despite their differences in computation.  Both 

multimetric and multivariate approaches to contrasting test sites with reference sites use 

procedures, however, that are not consistent from one data set to another.  Multimetric 

calculation of a single index of biotic integrity involves selection, standardization and 

summation of those metrics that produce the best separation of reference from test sites or 
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best correlations with stressor gradients.  This means that the number and type of metrics 

used to compute the index may vary from one data set or project to another (though some 

programs use a fixed suite of metrics, as in the Pacific Northwest, Karr 1998).  

Multivariate approaches also involve somewhat subjective decisions for identifying 

reference groups that depend on the clustering techniques and measures of community 

similarity used, and also employ differing combinations of environmental variables and 

weightings to assign a test site to some probability of belonging to a reference group.  

These predictor variables and their coefficients change from one data set to another such 

that test sites are evaluated only in the context of a circumscribed group of reference 

sites.  Notwithstanding this lack of uniformity and other potential biases and limitations 

of both multimetric indices and multivariate predictive models (reviewed by Karr and 

Chu 2000, Norris and Hawkins 2000, Suter 1993), the results presented here suggest that 

similar assessments of impairment are obtained using either of these analytical tools for 

data sets derived from differing field and laboratory bioassessment methods. 

 

CONCLUSIONS 

This study showed broad equivalence among bioassessment methods in 

application to distinguishing impaired from unimpaired biotic conditions in streams.  

Using different field and laboratory methods and analytical tools, the complementary 

results argue that the outputs from all approaches were robust, data and impairment 

assessments were interchangeable, and these different lines of evidence provide mutual 

support rather than confusion in interpretations of biological monitoring of water quality.  

Although conclusions regarding the separation of reference from test sites were seldom in 

conflict, some differences between methods were apparent with regard to distinguishing 

moderate levels of degradation and environmental stress thresholds.  For the purpose of 

choosing methodologies in California biomonitoring programs, following are some 

considerations and options for proceeding: 

 

o Monitoring of research studies with long-term data sets and project-specific 

sampling designs, where changes in the composition of localized biological 

communities are being followed, require consistent methodologies for 
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comparing trends and taxon-specific or localized changes.  In these cases it is 

important to retain pre-existing methods so that data are strictly comparable. 

o For ambient monitoring and biocriteria development: 

1. Continue using existing methods since assessments will usually be in 

agreement (high correlations of IBIs and O/Es suggest data may be shared 

directly or converted if necessary) 

2. Use the most cost-effective method since the results showed equal 

outcomes in impaired/unimpaired assessment conclusions (R5.USFS.USU 

is lowest cost method) 

3. Adopt one uniform method with the best potential for data-sharing in 

biocriteria development (CSBP has the most extensive statewide database, 

but R5.USFS.USU contains data from most western states) 

4. Use the method with the most precision and best potential for 

distinguishing moderate levels of stress response to impairment (UC-

SNARL has the best performance characteristics in this regard) 

5. Include an alternative method to improve upon impairment resolution, 

taxonomic bias, replication if needed, and multihabitat representation 

 

Though the methods compared had substantial differences in protocols, they were 

equivalent in accuracy of discriminating pre-defined reference from test sites.  These 

results therefore support the conclusion that data from multiple sources can be used in 

broad, integrated analyses of stream conditions, and can be converted to a uniform data 

structure provided simple standardizations are employed to enhance data comparability.
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Figure 1.  Precision contrast among methods, standardized as the coefficient of variation 
(CV) for the 15 metrics used to prepare the IBI from reference streams sampled.   
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Figure 2.  Number of metrics achieving data quality objectives of variability of less than 
20% and 25% CV values for the 15 metrics used to prepare the IBI from reference 
streams sampled. 
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IBI and O/E Precision Estimates Among Methods
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Figure 3.  Precision contrast among methods for overall index indicators of integrity and 
impairment: IBIs for large and small stream types (multimetric) and O/E (observed over 
expected) values (multivariate or predictive models).  O/E null refers to simple 
calculation of this community similarity comparison without predictive classification of 
reference sites, and O/E model refers to the full model where the expected values for test 
sites are based on the weighted prediction from reference site clusters.  Note that all 
methods and models show reference condition near or below DQO of 20% CV. 
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Figure 4.  Ratio of CV for large vs small stream types (reference sites only) as an 
indicator of bias among methods.  Deviation from ratio near 1.0 shows bias in 
applicability of metrics or index to different stream types sampled here (or regions, 
stream class categories). 
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Figure 5.  Potential for discrimination of test sites from reference condition is indicated 
by reduction in the ratio of test mean from reference mean, shown here for multimetric 
IBI for large and small stream groups, and for the multivariate O/E indicator.  As the ratio 
approaches 1.0 there is less and less power for the indicator to discriminate impairment. 
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Figure 6.  Sensitivity in distinguishing test sites on average relative to the reference mean 
and its variation in different cases of index development.  Used as a t-statistic, all 
methods and cases would yield significant values for maintaining the probability of 
making a type I error at less than 0.05. 
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Correlation of IBIs for Large Streams (relative to SNARL rank)
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Figure 7.  Co-plots of IBI scores derived from each method for large streams relative to 
the ranking of SNARL scores (reference = R, test = T). 
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Figure 8.  Co-plots of IBI scores derived from each method for small streams relative to 
the ranking of SNARL scores (reference = R, test = T). 
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Correspondence of O/E values for Each Stream (SNARL Ranks)
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Figure 9.  Co-plots of O/E values derived from each method for all streams relative to the 
ranking of SNARL scores (reference = R, test = T).
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Figure 10.  Quantile thresholds for assessing the accuracy of identifying test site 
impairment for different methods and different measures of biological integrity. 
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Figure 11.  Standard deviation thresholds for assessing the accuracy of identifying test 
site impairment for different methods and different measures of biological integrity. 
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Figure 12.  Total person-hours of effort spent in completing field and laboratory tasks for 
a single site or reach bioassessment survey (sample collection, habitat survey, sample 
processing, sorting, identifications and counts) for each of three methods. 
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Figure 13.  Ranked IBI scores for reference (open) and test (black) sites for each method. 
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Figure 14.  Threshold values for loss of biological integrity associated with substrate degradation (by 
small particle sizes = % FSG, fines + sand + gravel) for different bioassessment methods.  Filled 
symbols = reference sites, open symbols = test sites. 
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Figure 15.  Threshold values for loss of biological integrity associated with conductivity (low flows, 
agricultural return flows) for different bioassessment methods.  Filled symbols = reference sites, open 
symbols = test sites. 
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Figure 16.  Threshold values for loss of biological integrity associated with riparian cover (reduced 
canopy vegetation) for different bioassessment methods.  Filled symbols = reference sites, open 
symbols = test sites. 
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Table 1.  Stream classification and reference site selection criteria. 

Table 1. Stream Size and 
Degradation Classification:           

Reference = 
<0.2 xings /km

Or <25% 
erosion

Large Stream Class Mean Width
Upstream 

Length (km)
Upstream 
Area (km2)

Road Xings per 
upstream km

Local bank 
erosion %

minimal or 
absent

severe or 
extensive R or T

Upper Truckee - Forest 737 11.3 32.5 0.000 0.0% R
Willow Creek - lower 307 10.4 28.1 0.000 3.3% R
East Carson – above Bagley 1484 37.3 237.7 0.000 3.3% R
Silver King Creek – above valley 711 22.2 100.1 0.000 10.0% R
West Walker – upper Leavitt 1253 24.6 120.4 0.000 40.0% R
Convict Creek – lower SNARL 415 16.6 61.7 0.043 0.0% R
Wolf Creek – above trailhead 636 12.8 40 0.076 20.0% R
West Walker - middle Pickel 1464 27.84 145.9 0.102 33.3% T
Robinson Creek – Honeymoon flat 817 23.1 106.9 0.112 26.7% R
Buckeye Creek – below WRID 422 30.3 168 0.122 76.7% T
Sagehen Creek – below field station 382 6 11.3 0.123 3.3% R
Robinson Creek – below WRID 672 34.8 211.7 0.134 63.3% T
Lee Vining Creek – moraine campground 951 12.6 38.9 0.145 10.0% R
Rush Creek - bottomlands 963 30.3 168 0.170 26.7% T
Deadman Creek - above Big Springs cg. 489 17.3 66.1 0.174 13.3% R
Upper Owens - below Mono Tunnel 1008 23.9 113.2 0.188 0.0% T
Upper Owens - above Mono Tunnel 644 23.3 108.5 0.189 0.0% R
Upper Owens - below Big Springs cg. 753 19.2 78.6 0.191 0.0% R
West Carson – upper Faith 479 4.3 6.5 0.195 3.3% R
East Walker – WRID 919 24.6 120.4 0.221 90.0% T
Upper Owens – Ebasco 417s 964 27.8 145.6 0.225 26.7% T
Upper Owens – Ebasco Powerline 994 32.4 188 0.235 3.3% T
Upper Truckee - Celio lower 736 12.8 40 0.280 6.7% R
West Carson - lower/BLM 1255 33.4 197.7 0.312 6.7% R
Upper Truckee - state park 921 13.7 44.8 0.315 7.0% R
Upper Truckee - Barton lower 885 21.8 97.1 0.327 33.0% T
Upper Owens - above Bridge 1556 42.2 292 0.389 16.7% T
Upper Owens - below Benton xing 1132 44.2 315.4 0.395 33.3% T
Mammoth Creek - substation 660 17 64.2 0.560 10.0% R
Cold Stream Creek – upper gravel pit 523 6.9 14.3 0.565 20.0% R

Small Stream Class
Trib.1 Silver King – above SKC 75 2 1.8 0.000 0.0% R
Forestdale Creek – upper 318 1.98 1.8 0.000 3.3% R
Willow Creek - lower 307 10.4 28.1 0.000 3.3% R
Spratt Creek – above rd xing 174 7.2 15.4 0.132 10.0% R
West Carson – upper Faith 479 4.3 6.4 0.195 3.3% R
Kirman Creek - lower 96 2.75 3.1 0.232 10.0% T
Cottonwood Creek - Sweetwater meadow 153 8 18.3 0.269 0.0% R
Cowcamp Creek – lower Schoettler 114 3.37 4.3 0.286 10.0% R
Slinkard Creek - restoration area 66 8 18.1 0.365 0.0% R
Bagley Valley Creek - meadow 133 2 1.9 0.629 10.0% T
Bagley Valley Creek - lower 136 2.7 3 0.862 10.0% T
Poore Creek - 1/3 grazed 207 4.36 6.64 0.890 3.3% T

Local or upstream habitat 
degradation (grazing, 

altered channel structure)

 
Upstream area calculation: estimated from length of single longest channel length from site 
location to headwater as L= 1.4 A0.6 (square kilometers)  

Reference site selection: initial screen as sites with upstream road density less than 0.2 crossings 
per km channel, OR local bank erosion <25% cover AND no known degradation source exists 
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Table 2.  Summary of Differences Between Methods 

 
PROTOCOL: 

UC-SNARL 
Lahontan 

CSBP 
Dept. Fish and Game 

RIVPACS 
Forest Service 

Net type and mesh D-frame, 250 µm D-frame, 500 µm D-frame, 500 µm 
Replication 5 composites of 3 3 composites of 3 1 composites of 8 
Area sampled 1.39 m2 (1’x1’) 1.67 m2 (1’x2’) 0.74 m2 (1’x1’) 
Subsampling Drum splitter Grid Tray Grid Tray 
Enumeration 250-500 count 300 fixed count 500 fixed count 
Taxonomic 
Resolution 

Genus/species 
(including midges 

and mites) plus 
large and rare 

Genus/species 
(midges and mites to 

subfamily/family) 
plus large and rare 

Genus/species 
(including midges 

and mites) plus 
large and rare 

Similarities: riffle habitat, physical habitat surveys, water chemistry, QA/QC to <5% sort 
error (20% checked) and 100% IDs checked, multimetric and multivariate analyses used 
for each 
 

 

 

Table 3.  Correlations among final IBI scores for the different field/lab methods before 

and after data standardizations.  Correlations are calculated from all streams analyzed 

simultaneously.  For additional details on the data standardizations, see Methods section. 
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Table 4.  Similarity Comparisons within and between field/lab methods.  Calibration 

alternatives for converting SNARL method to 500 fixid-count R5.USFS-USU data form.  

Similarities are calculated as Bray-Curtis Distance (0 value indicating identical sample) 

using proportional data.   

(1)            
500 resampling

(2)            
500 & 

Large/Rare

(3)            
500 & Bias 
Correction

(4)             
Same # from 

each Replicate

Stream Within-Method a
SNARL vs. 
RIVPACS

SNARL vs. 
RIVPACS

SNARL vs. 
RIVPACS

SNARL vs. 
RIVPACS

SNARL vs. 
RIVPACS

Bagley.control 0.52 0.49 0.31 0.32 0.31 0.34
Bagley.meadow 0.34 0.29 0.18 0.20 0.19 0.20
Buckeye 0.25 0.55 0.52 0.53 0.52 0.53
Cold 0.31 0.37 0.36 0.34 0.34 0.35
Convict 0.31 0.37 0.33 0.33 0.31 0.35
Cottonwood 0.35 0.37 0.32 0.35 0.32 0.34
Cowcamp 0.21 0.37 0.36 0.35 0.35 0.37
Deadman 0.28 0.44 0.43 0.43 0.41 0.42
ECarson 0.31 0.36 0.31 0.31 0.29 0.31
EWalker 0.34 0.31 0.23 0.26 0.22 0.26
Forestdale 0.31 0.30 0.26 0.23 0.24 0.24
Kirman 0.36 0.33 0.25 0.24 0.25 0.25
Lee 0.25 0.27 0.23 0.25 0.24 0.24
Mammoth 0.31 0.31 0.25 0.29 0.30 0.27
Owens.417 0.23 0.30 0.27 0.28 0.27 0.28
Owens.abovetun 0.19 0.18 0.35 0.17 0.39 0.16
Owens.belowtun 0.30 0.38 0.16 0.36 0.15 0.35
Owens.Benton 0.37 0.41 0.32 0.40 0.35 0.39
Owens.bridge 0.43 0.36 0.19 0.27 0.26 0.25
Owens.power 0.31 0.40 0.39 0.36 0.35 0.37
Owens.spring 0.26 0.34 0.30 0.31 0.32 0.30
Poore 0.27 0.41 0.40 0.38 0.38 0.39
Robinson.below 0.35 0.32 0.23 0.27 0.25 0.24
Robinson.honey 0.38 0.32 0.23 0.23 0.20 0.22
Rush 0.21 0.42 0.41 0.42 0.40 0.43
Sagehen 0.34 0.43 0.39 0.38 0.36 0.38
Silver 0.34 0.39 0.36 0.29 0.30 0.32
Slinkard 0.22 0.50 0.49 0.49 0.49 0.49
Spratt 0.42 0.35 0.24 0.27 0.26 0.25
Trib.Silver 0.40 0.50 0.45 0.46 0.45 0.47
Truck.Bart 0.29 0.43 0.37 0.40 0.39 0.41
Truck.Celio 0.30 0.38 0.35 0.36 0.36 0.35
Truck.forest 0.35 0.60 0.58 0.57 0.58 0.58
Truck.park 0.26 0.39 0.36 0.37 0.36 0.36
WCarson.blm 0.38 0.42 0.41 0.33 0.31 0.33
WCarson.faith 0.33 0.33 0.26 0.26 0.27 0.28
Willow 0.34 0.32 0.36 0.26 0.38 0.25
Wolf 0.26 0.31 0.44 0.26 0.45 0.25
WWalker.Leavitt 0.39 0.43 0.25 0.37 0.24 0.37
WWalker.Pickel 0.38 0.52 0.26 0.45 0.26 0.46

 Average B-C Distance = 0.32 0.38 0.33 0.33 0.33 0.33

a - data standardizations are explained in detail in the methods and in the Appendix XX table.
b - Within-Method similarity is measured as the mean among the 10 similarity permutations among original SNARL replicates
c - These are the mean value for 3 independent randomized re-samplings of the data
d - these analyses compared SNARL and RIVPACS methods because they shared the same refined taxonomic resolution for mites and midges

Original Comparisons Standardized SNARL Data a
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APPENDIX.  List of Metrics Tested for IBI Development (*selected for IBI) and Metric Calculations

Number of individuals per square meter 
Total number of individuals identified per sample 
*Raw taxa richness per sample 
Taxa richness per sample using CSBP taxa resolution 
Raw taxa richness rarefied to 217 bugs per sample 
*CSBP taxa richness rarefied to 217 bugs per sample 
Raw taxa richness rarefied to the same number of bugs for each site (but variable across sites) 
CSBP taxa richness rarefied to same level for each site 
Raw taxa richness rarefied to 243 bugs per sample (but removed 2 SNARL samples) 
CSBP taxa richness rarefied to 243 bugs per sample (but removed 2 SNARL samples) 
Total number of individuals identified across all samples for each method 
*Raw Composite Richness - total number of taxa found in all replicates for a method 
Composite Richness for CSBP taxa resolution - total number of taxa in all replicates 
Composite Richness but rarefied to 437 bugs per sample 
*Composite Richness but rarefied to 437 bugs per sample and using CSBP taxa resolution 
*Shannon Diversity (H') 
Shannon Diversity for samples standardized to CSBP taxonomic resolution 
Community Evenness 
Community Evenness standardized to CSBP taxa res. 
Simpson's Diversity Measure 
Simpson's for CSBP taxa resolution 
Hurlbert's "Pi" Diversity Measure 
Hurlbert's "Pi" Diversity Measure for CSBP taxa resolution 
*Total EPT Taxa per sample 
*Total Ephemeroptera taxa per sample 
*Total Plecoptera taxa per sample 
*Total Trichoptera taxa per sample 
Total Dipteran taxa per sample (includes Chironomids) 
Total Dipteran taxa per sample but with CSBP taxa resolution for each sample 
Total number of Chironomidae taxa 
Total Number of Chironomidae subfamilies (i.e., CSBP taxa resolution) 
Total Number of Non-Insect Taxa 
Total Number of Non-Insect Taxa but with mites just as "mites" 
Percent of Individuals in a Sample which were EPT taxa 
*Percent of Taxa which were EPT taxa 
Percent of Individuals in a Sample which were EPT taxa but excluding Baetis and Hydropsychidae 
Percent of Individuals which were Chironomidae 
Percent of taxa which were Chironomidae 
Percent of taxa which were Chironomidae (ID'd only to subfamily) 
Ratio of Chironominae abundance to Orthocladiinae abundance 
Ration of EPT Richness to Chironomidae Percent Abundance (ept.rich / perc.chiro.abund) 
The Percent Abundance of the Most Abundant Taxon in a Sample (Dominance) 
The Percent Abundance of the Most Abundant Taxon in a Sample but at CSBP taxa resolution 
*The Percent Abundance for the 3 most abundant taxa (Dominance 3) 
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Appendix.  List of Metrics Tested and Selected for IBI Development (continued) 
 

The Percent Abundance for the 3 most abundant taxa but at CSBP taxa resolution 
D-50 Dominance = # taxa to get to 50% abundance of sample 
D-50 Dominance = # taxa to get to 50% abundance of sample but using CSBP taxa resolution 
*Simple Biotic Index 
Biotic Index but using CSBP taxa resolution 
*Number of Taxa which were Intolerant (TV=0,1,2) 
Percent of Taxa which were Intolerant 
Percent Abundance of Taxa which were Intolerant 
Number of Taxa which were Intolerant (TV=0,1,2) but using CSBP taxa resolution 
Percent of Taxa which were Intolerant but using CSBP taxa resolution 
Percent Abundance of Taxa which were Intolerant using CSBP taxa resolution 
*Percent of Taxa which were Tolerant (TV=7,8,9,10) 
Percent Abundance of Tolerant Taxa 
Percent of Taxa which were Tolerant using CSBP taxa resolution 
Percent Abundance of Tolerant Taxa using CSBP taxa resolution 
Percentage of Collectors 
Percentage of Scrapers 
Percentage of Filterers 
*Percentage of Shredders 
Percentage of Predators 
Percentage of Piercers 
Percentage of Collectors using CSBP taxa resolution 
Percentage of Scrapers using CSBP taxa resolution 
Percentage of Filterers using CSBP taxa resolution 
Percentage of Shredders using CSBP taxa resolution 
Percentage of Predators using CSBP taxa resolution 
Percentage of Piercers using CSBP taxa resolution 

Note:  In addition to IBI development using the 15 metrics listed, an IBI with nearly the 
same properties was developed using only 5 of these metrics [richness rarefied to 217 
count using CSBP taxonomy, EPT richness, biotic index, number of intolerant (TV 0,1,2) 
taxa, and percent of the taxa that were tolerant (TV 7,8,9,10)]. 
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Appendix (continued) Metric Calculations: 
Metric Formula Calculation 
1. Richness 

S =  ∑
taxaall

iI
The sum of non-zero 
unique taxa in each sample. 

2. Standardized Richness 

E(Sr) = 
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1  

The sum of non-zero 
unique taxa after making 2 
adjustments: 1) leaving all 
midges at subfamily and 
mites as just “mites”; and 
2) standardizing the 
number of individuals in 
each sample using 
Hurlbert’s rarefaction 
formula (Hurlbert 1971). 

3. Composite Richness 
S =  ∑

taxaall
iI

The sum of non-zero 
unique taxa after pooling 
all replicate samples at a 
stream together for each 
method. 

4. Standardized Composite 
Richness 

E(Sr) = 
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1  

The sum of non-zero 
unique taxa after pooling 
all replicate samples at a 
stream together for each 
method and after making 
the same 2 adjustments 
outlined above for 
Standardized Richness. 

5. Shannon Diversity 
H’ = ⎟

⎠
⎞

⎜
⎝
⎛∑

− N
N

N
N i

taxazerononall

i ln  
The standard diversity 
measure described by 
Shannon & Weaver. 

6. EPT Richness 
 
 

EPTrich =  ∑
taxaEPTall

iI
The sum of non-zero 
unique taxa in each sample 
belonging to the orders 
Ephemeroptera, Plecoptera, 
and Trichoptera. 

7. Ephemeroptera Richness 
Erich =  ∑

taxaEall
iI

The sum of non-zero 
unique taxa belonging to 
the order Ephemeroptera. 

8. Plecoptera Richness 
Prich =  ∑

taxaPall
iI

The sum of non-zero 
unique taxa belonging to 
the order Plecoptera. 

9. Trichoptera Richness 
Trich =  ∑

taxaTall
iI

The sum of non-zero 
unique taxa belonging to 
the order Trichoptera. 
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10. Percent EPT Richness % EPT  =  100⋅
S

EPTrich  EPT Richness divided by 
Richness. 

11. Dominance of 3 Top 
Taxa Dom = ∑

−−= )2(),1(),( nnni

i

N
N  Proportional abundance of 

the 3 most abundant 
invertebrate taxa in each 
sample. 

12. Biotic Index BI = ∑ ⋅

taxaall

ii

N
TVN  Average of the abundance 

of each taxon weighted by 
that taxon’s pollution 
tolerance score. 

13. Number of Intolerant 
Taxa 

Intol = ∑
≤ 2TVwithtaxa

iI  Number of non-zero unique 
taxa whose pollution 
tolerance score equaled 0, 
1, or 2, on a scale of 0 to 
10. 

14. Percent Tolerant Taxa 

Tol = 1007 ⋅
∑

≥

S

I
TVwithtaxa

i

 

Percent of total Richness 
composed of tolerant taxa; 
Tolerant Taxa defined as 
the number of non-zero 
unique taxa whose 
pollution tolerance score 
equaled 7, 8, 9, or 10, on a 
scale of 0 to 10. 

15. Percent Shredder Shred = 100⋅∑
taxashredderall

i

N
N  Percent of total invertebrate 

abundance composed of 
shredder individuals. 

 
Where Ni=Abundance of ith taxon;  N=Total Abundance across taxa (∑ iN );  Ii is an indicator variable which takes a 

value of 1 when Ni>0 and which equals 0 when Ni=0; r=number of individuals in the standardized rarefaction sample 
(e.g., 100 individuals if the set level for rarefaction richness were 100 individuals in every sample); N(n)= nth ordered 
abundance value (i.e., most abundant invertebrate out of n taxa); N(n-1)= (n-1)th ordered abundance value (i.e., second 
most abundant invertebrate out of n taxa); TVi = Tolerance Value of each taxon, which is a value between 0 and 10 and 
reflects (for higher numbers) increasing ability to tolerate severe natural or anthropogenic environmental conditions. 
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